Markscheme

May 2023

Mathematics: applications and interpretation

Higher level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	35			
72	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award A0 for the final mark (and full FT is available in subsequent parts)	

3

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read
If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) METHOD 1 correct sketch with some indication of maximum point

0.921 (seconds) $\left(0.921052 \ldots, \frac{35}{38}\right)$

METHOD 2
correct substitution into equation for line of symmetry
($t=$) $-\frac{8.75}{2 \times-4.75}$
0.921 (seconds) $\left(0.921052 \ldots, \frac{35}{38}\right)$

METHOD 3

equating the correct derivative to 0
$-9.5 t+8.75=0$
0.921 (seconds) $\left(0.921052 \ldots, \frac{35}{38}\right)$

Note: Award M1AO for a final answer of 0.92 seen with no working.
(b) METHOD 1
correct sketch with some indication of x-intercept

Note: May be seen in part (a).
continued...

Question 1 continued

METHOD 2

setting the equation to zero
$-4.75 t^{2}+8.75 t+1.5=0$
2 (seconds)
A1

Note: If both roots are given, with or without working, award (M1)AO.
(c) METHOD 1
correct sketch of quadratic function and a straight line in approximate correct position
(M1)

1.88 (seconds) (1.87577...(seconds)) A1

METHOD 2
setting the equation equal to 1.2
$-4.75 t^{2}+8.75 t+1.5=1.2$
1.88 (seconds) (1.87577...(seconds))

Note: Award (M1)AO if $-0.0336702 \ldots$ seen as (part of) a final answer.
Award M1A0 for answer of 1.9 seen without working.
[2 marks]
(d) Award R1 for a sensible reason in the context of the question:
e.g.

The model ignores air resistance (or wind)
The model treats the ball as a point
The model assumes gravity is constant
The model assumes that the ball continues to follow the trajectory even after hitting the ground
This model ignores the bouncing back of the ball after hitting the ground
Note: Do not accept generic criticisms of any mathematical model, such as:
There are assumptions being made
Models are never accurate / It is only a model
2. (a) 11.0 (11.0212...)

Note: Award $\boldsymbol{A 1}$ for a final answer of 11 if no unrounded answer is seen.
(b) EITHER
$11.0>9.488(11.0212 \ldots>9.488)$
R1
OR
$0.0263<0.05(0.0263264 \ldots<0.05)$
THEN

EITHER

(there is significant evidence to) reject $\mathrm{H}_{0} \quad$ A1
OR
(there is significant evidence that) the (food) quality and the type of meal are not independent

Note: Do not award ROA1.
Award $\boldsymbol{R 1}$ for $\chi_{\text {calc }}^{2}>\chi_{\text {crit }}^{2}$, provided the calculated value is explicitly seen in part (b).
Accept " p-value < significance level" provided their p-value is seen and their p-value is between 0 and 1 .
3. (a) attempting to use $\mathrm{P}(R \cap S)=\mathrm{P}(R) \mathrm{P}(S)$
$0.2=0.8(0.2+x)$
$x=0.05$
(b) $x+0.2+0.6+y=1$
$y=0.15$
A1
[2 marks]
(c) METHOD 1
attempting to apply $\mathrm{P}\left(R^{\prime} \mid S^{\prime}\right)=\frac{\mathrm{P}\left(R^{\prime} \cap S^{\prime}\right)}{\mathrm{P}\left(S^{\prime}\right)}$
$\frac{0.15}{0.2}$
$=\frac{3}{4}$

METHOD 2

$\mathrm{P}\left(R^{\prime} \mid S^{\prime}\right)=\mathrm{P}\left(R^{\prime}\right)$ (because R, S are independent)
$=1-0.25=0.75$
Note: FT from their values of x or y.
4. (a) METHOD 1 (use of financial app in GDC)
$N=5 \quad$ OR $\quad N=20$
$I \%=1.2 \quad I \%=1.2$
$P V= \pm 520 \quad P V= \pm 520$
$P / Y=1 \quad P / Y=4$
$C / Y=4 \quad C / Y=4$
(M1)(A1)
Note: Award $\boldsymbol{M 1}$ for evidence of using the financial app on the calculator, $\boldsymbol{A 1}$ for all correct entries.
(\$) 552.11
Note: Award at most (M1)(A1)A0 if correct answer is not given to two decimal places.

METHOD 2 (use of formula)

attempt to substitute into compound interest formula
$520 \times\left(1+\frac{1.2}{100 \times 4}\right)^{5 \times 4}$
(\$) 552.11
Note: Award at most (M1)(A1)A0 if correct answer is not given to two decimal places.
(b) EITHER
$N=5$
$I \%=43.5$ (43.4772...(\%))
$P V= \pm 520$
$F V=\mp 30$
(M1)(A1)A1
Note: Award $\boldsymbol{M} \mathbf{1}$ for evidence of using the finance app on the calculator, $\boldsymbol{A} \mathbf{1}$ for all correct entries, $\boldsymbol{A 1}$ for correct final answer. Condone missing -/+ sign if the correct final answer is seen.

OR

$$
\begin{array}{ll}
30=520\left(1-\frac{r}{100}\right)^{5} \text { (or equivalent) } & \text { (M1)(A1) } \\
(r=) 43.5 \%(43.477 \ldots \%) & \boldsymbol{A 1}
\end{array}
$$

Note: Award $\boldsymbol{M 1}$ for using the compound interest formula, $\boldsymbol{A 1}$ for correct substitutions and for equating to 30, A1 for correct final answer. Accept ($r=$) -43.5%.
Award M1A1AO for a final answer of 56.5%.
5. (a) $X \sim \mathrm{~N}\left(4,0.25^{2}\right)$

EITHER
correct probability expression
$\mathrm{P}(X<3.7)$
Note: Accept a weak or strict inequality, and any label instead of X, e.g. length or L.
OR
normal curve with vertical line, left of mean, labelled 3.7, and shaded region

THEN

0.115 ($0.115069 \ldots, 11.5 \%$)

Note: Award M1AO for 0.12 if no previous working.
(b) EITHER

Correct probability expression
(M1)
$(\mathrm{P}(X<k)=0.7 \quad$ OR $\quad \mathrm{P}(X>k)=0.3$
Note: Accept a weak or strict inequality, and any label instead of X e.g., length or L.
continued...

Question 5 continued

OR
normal curve with vertical line to the right of the mean and shaded region, correctly labelled either 0.3 or 0.7

THEN

($k=$) 4.13 (4.13110...)
Note: Award M1AO for 4.1 if no previous working.
(c) EITHER
correct probability equation
(M1)
$\mathrm{P}($ length $<4+m)=0.8 \quad$ OR $\quad \mathrm{P}($ length $<4-m)=0.2$
Note: Accept any letter instead of "length" e.g., X or L.

OR

normal curve with vertical lines symmetrical about the mean line with a correct indication of an area of 0.6 or 0.2 or 0.8

THEN

0.210 (0.210405...)

Note: Award (M1)AO for an answer of 3.7895 or 4.2105 seen without working. Condone 0.21 seen and award (M1)A1.
6. (a) EITHER
$\frac{4}{3} \pi(3.4)^{3}$
Multiplying their volume by $\frac{4}{5}$
(M1)

OR
$\frac{4}{3} \pi(3.4)^{3}$
Subtracting $\frac{1}{5}$ of their volume
$\left(\frac{4}{3} \pi(3.4)^{3}-\frac{1}{5} \times \frac{4}{3} \pi(3.4)^{3}\right)$

Note: The M1 can be awarded for a final answer of $32.9272 \ldots$ seen without working.

THEN

$132 \mathrm{~cm}^{3}$ (131.708 $\ldots \mathrm{cm}^{3}$)
A1 [3 marks]
(b) $\pi \times 3 \times 11$
103.672... $\left(\mathrm{cm}^{2}\right)$ OR $33 \pi\left(\mathrm{~cm}^{2}\right)$
$104\left(\mathrm{~cm}^{2}\right)$
7. (a) $\quad(56 \times 0.86)=48.2 \quad(48.16)$

Note: Accept 48.
[1 mark]
(b) recognizing binomial distribution (may be seen in (a))
e.g. $X \sim B(56,0.86)$
$(\mathrm{P}(X \geq 50)=) 0.316 \quad$ A2
[3 marks]
(c) $\mathrm{P}(X \leq n) \geq 0.25$
$n=46$

A2
8. (a) attempt to create a 5×5 adjacency matrix
(M1)

$$
\boldsymbol{M}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Note: Allow the transposed matrix. Award A2 for all entries correct, A1 if one or two entries are incorrect, $\boldsymbol{A} \boldsymbol{O}$ otherwise.
Answer presented in markscheme assumes ABCDE ordering of rows and columns; accept other orders provided they are clearly communicated.
Award A1 if the zeroes are replaced by blank cells.
(b) (i) recognizing need to find \boldsymbol{M}^{7}
$\boldsymbol{M}^{7}=\left(\begin{array}{ccccc}8 & 8 & 17 & 8 & 13 \\ 8 & 10 & 19 & 17 & 14 \\ 6 & 11 & 16 & 10 & 17 \\ 11 & 8 & 19 & 14 & 10 \\ 2 & 6 & 8 & 11 & 8\end{array}\right)$
2 (routes)
A1
(ii) vertices visited in order are

EITHER

$E \rightarrow D \rightarrow C \rightarrow B \rightarrow C \rightarrow B \rightarrow D \rightarrow A$ A2

OR

$$
E \rightarrow D \rightarrow C \rightarrow B \rightarrow C \rightarrow E \rightarrow D \rightarrow A
$$

9. (a)

Athlete	A	B	C	D	E	F	G	H
Age rank	7	6	3	5	4	2	8	1
Time rank	3.5	2	3.5	6	7	8	1	5

Note: Award A1 for each correct row.
(b) $\quad r_{s}=-0.671(-0.670670 \ldots)$

Note: Only follow through from an incorrect table provided the ranks are all between 1 and 8 .
Award $\boldsymbol{A 1}$ for -0.67 OR for the omission of the negative sign, e.g. 0.671 (0.670670...) or 0.67
(c) (A value of $r_{S}=-0.671$) indicates a negative correlation between a person's age and the best time they take to run 100 m .

R1
Note: Condone any comment that includes "weak" or "strong" etc. Accept an interpretation in words, but only if there is a general link described and not a rule: "The older a person gets, the faster they tend to run". Answer must be in context.
(d) Award R1 for any sensible reason:

The correlation, such that it is, is unlikely to be linear for this type of data.
Spearman's CC is less sensitive to outliers
Sung-Jin is not sure the data is drawn from a bivariate normal distribution
There are outliers/extreme data
Same time for two athletes with significantly different ages
[1 mark]
(e) (i) 0.264 ($0.263762 \ldots$...)

A2
Note: Award A1 for 0.26 with no working. Given that the exact model is not specific in the question, accept correct r^{2} values from other regression models: $0.631,0.650,0.759$ and 0.256 .
(ii) approximately 26% of the variability in the times taken can be explained by the runner's age.
10. (a) H_{0} : there is no particular preference for any of the flavours
H_{1} : there is a particular preference for some of the flavours
Note: Accept equivalent statements such as " H_{0} : the population ratio of flavour preferences is 1:1:1:1" or " H_{0} : the population proportions are equal for each flavour" or " H_{0} :the data is drawn from a uniform distribution".
[2 marks]
(b) EITHER

p-value $=0.0629(0.0629034 \ldots)$	A2
$0.0629>0.05$	$\boldsymbol{R 1}$
OR	$\boldsymbol{A 2}$
$\chi_{\text {calc }}^{2}=7.30$	$\boldsymbol{R 1}$
$7.30<7.82$	

Note: Award A2 for either p-value $=0.063$ or $\chi_{\text {calc }}^{2}=7.3$ seen. Award $\boldsymbol{R 1}$ for a correct comparison involve their p-value or $\chi_{\text {calc }}^{2}$, and follow through for their conclusion.

THEN

so there is insufficient evidence to reject H_{0}, i.e.
there is no particular preference for any of the flavours.
Note: Do not award R0A1.
[4 marks]
11. (a) $30 \sin \left(t+60^{\circ}\right)+60 \sin \left(t+10^{\circ}\right)$
finding maximum graphically 82.5 (V) (82.5471...)

Note: Award M1AO for 83.

(b) recognizing that a is still $1 \quad$ A1
$V_{0}=82.5$ A1
attempt to find an x-intercept of combined voltage (M1)
$b=26.2^{\circ}$ (26.1643... $)$ OR any other correct x-intercept A1
Note: May be seen in the final answer. Award M1AO for $b=26$ with no working.
$\left(V_{\text {Тот }}=82.5 \sin \left(t+26.2^{\circ}\right) \quad\left(82.5471 \ldots \sin \left(t+26.1643 \ldots{ }^{\circ}\right)\right)\right)$
Note: Award at most (M1)A1(A1)A0 if phase shift of $-153.835 \ldots$ is seen in the final answer. In part (b), candidates may use $\arg \left(30 \mathrm{e}^{60 \mathrm{i}}+60 \mathrm{e}^{10 \mathrm{i}}\right)$ to determine the new phase shift, and hence could be awarded $\boldsymbol{M} \mathbf{1}$ for this valid method.
12. (a) equating volume of sphere formula to 288π
(M1)

A1
[2 marks]
(b) $\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$ (seen anywhere)

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} r} \frac{\mathrm{~d} r}{\mathrm{~d} t}
$$

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=4 \pi r^{2} \frac{\mathrm{~d} r}{\mathrm{~d} t}
$$

$$
15=4 \pi \times 6^{2} \times \frac{\mathrm{d} r}{\mathrm{~d} t}
$$

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{15}{144 \pi}\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)(0.0332,0.0331572 \ldots)
$$

A1
13. (a) METHOD 1 (find product of matrices first)
$T \rightarrow T^{\prime}$ is represented by $\boldsymbol{Q P}=\left(\begin{array}{cc}-4 & 1 \\ 1 & 3\end{array}\right)\left(\begin{array}{cc}3 & 1 \\ 0 & 2\end{array}\right)$
$=\left(\begin{array}{cc}-12 & -2 \\ 3 & 7\end{array}\right)$
recognizing need to find their $(\boldsymbol{Q P})^{-1}$
$(\boldsymbol{Q P})^{-1}=\left(\begin{array}{cc}-12 & -2 \\ 3 & 7\end{array}\right)^{-1}$
$=-\frac{1}{78}\left(\begin{array}{cc}7 & 2 \\ -3 & -12\end{array}\right) \mathbf{O R}=\left(\begin{array}{cc}-0.0897435 \ldots & -0.0256410 \ldots \\ 0.0384615 \ldots & 0.153846 \ldots\end{array}\right)$

METHOD 2 (find inverses of both matrices first)

recognizing need to find inverse of both \boldsymbol{P} and \boldsymbol{Q}
$\boldsymbol{P}^{-1}=\left(\begin{array}{cc}\frac{1}{3} & -\frac{1}{6} \\ 0 & \frac{1}{2}\end{array}\right)$ AND $\boldsymbol{Q}^{-1}=\left(\begin{array}{cc}-\frac{3}{13} & \frac{1}{13} \\ \frac{1}{13} & \frac{4}{13}\end{array}\right)$
$T^{\prime} \rightarrow T$ is represented by $\boldsymbol{P}^{-1} \boldsymbol{Q}^{-1}=\left(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right)^{-1}\left(\begin{array}{cc}-4 & 1 \\ 1 & 3\end{array}\right)^{-1}$
$=-\frac{1}{78}\left(\begin{array}{cc}7 & 2 \\ -3 & -12\end{array}\right) \quad \mathbf{O R}=\left(\begin{array}{cc}-0.0897435 \ldots & -0.0256410 \ldots \\ 0.0384615 \ldots & 0.153846 \ldots\end{array}\right)$
Note: In METHOD 1, award M1A0M1AO if they multiply the matrices in the wrong order. In METHOD 2, award M1A1M1A0 if they multiply the matrices in the wrong order.
[4 marks]
(b) $\left(\operatorname{det}\left[-\frac{1}{78}\left(\begin{array}{cc}7 & 2 \\ -3 & -12\end{array}\right)\right]=\right)-\frac{1}{78} \quad$ OR $\quad\left(\operatorname{det}\left(\begin{array}{cc}-12 & -2 \\ 3 & 7\end{array}\right)=\right)-78$
area of $T^{\prime}=|\operatorname{det} \boldsymbol{Q P}| \times$ area of $T \quad$ OR area of $T=\left|\operatorname{det}(\boldsymbol{Q P})^{-1}\right| \times$ area of T^{\prime}
\Rightarrow area of $T=273 \times \frac{1}{78}$
$=3.5\left(\mathrm{~cm}^{2}\right)$
Note: Award (A1)(MO)AO for an answer of $-3.5\left(\mathrm{~cm}^{2}\right)$ with or without working. Accept an answer of $4.04\left(\mathrm{~cm}^{2}\right)$ from use of 3sf values in their answer to part (a).
14. (a) $v_{B}=\binom{2}{-3}$
attempt to find any relevant angle
$\tan ^{-1}\left(\frac{3}{2}\right) \quad\left(=56.3099 \ldots .{ }^{\circ}\right)$
$\left(90^{\circ}+56.3099 \ldots{ }^{\circ}=\right) 146^{\circ}\left(146.3099 \ldots{ }^{\circ}\right)$
(b) setting $1+2 t=-2+4 t$
$t=1.5$ (hrs.)
(c) $\boldsymbol{r}_{B}-\boldsymbol{r}_{A}=(-3+2 t) \boldsymbol{i}+(-7+4 t) \boldsymbol{j}$
$-3+2 t=-(-7+4 t)$
$t=1.67$ (hrs.) $\left(1.66666 \ldots, \frac{5}{3}\right)$
15. (a) (i) $224 \mathrm{~g}(224.25 \mathrm{~g})$
(ii) $[222.1,226.4]$

A1A1
Note: Award A1 for each correct end of the interval. Accept open or closed (weak or strict) interval notation. Inequalities involving μ would also be accepted, but not involving \bar{x}.
Award A1A0 for correct answers not given correct to 4 sf.
(b) EITHER
the (population) weight of granules of Apollo coffee is normally distributed.
OR
the readings are independent
(c) 226 g lies within the confidence interval,

R1
so there is no evidence to dispute the claim on the label.
A1
Note: Do not award ROA1.
16. (a) $(1.04,0.509)((1.03667 . . ., 0.509085 \ldots))$

A1A1
[2 marks]
(b) attempt to make x the subject for either function
(M1)
$x=4 y^{2}, x=\cos ^{-1} y$
A1A1
attempt to use $V=\pi \int x^{2} \mathrm{~d} y$
(M1)
$V=\pi \int_{0}^{0.509885 \ldots}\left(4 y^{2}\right)^{2} \mathrm{~d} y+\pi \int_{0.509085 . .}^{1}\left(\cos ^{-1} y\right)^{2} \mathrm{~d} y$
A1
[5 marks]
(c) $=1.15$ (units 3)

A2
Note: Do not FT from part (b) to part (c).
Award $\mathbf{A 1}$ for 1.1. with no previous working.
[2 marks]
Total [9 marks]
17. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is undetermined at $(0,1)$
$\left(\right.$ so cannot use $\left.y_{n}=y_{n-1}+h\left(\frac{x}{\left(x^{2}+1\right)(2 y-2)}\right)\right)$
Note: Accept "undefined", "indeterminate" or "division by zero" in place of "undetermined".
(b) $\quad \int(2 y-2) \mathrm{d} y=\int \frac{x}{x^{2}+1} \mathrm{~d} x$
$y^{2}-2 y=\frac{1}{2} \ln \left(x^{2}+1\right)+c$
A1
substituting $x=0, y=1$
M1
$c=-1$
$y^{2}-2 y+1=\frac{1}{2} \ln \left(x^{2}+1\right)$
$(y-1)^{2}=\frac{1}{2} \ln \left(x^{2}+1\right)$
A1
$y-1=\sqrt{\frac{1}{2} \ln \left(x^{2}+1\right)}$ (where positive root required as $y \geq 1$)
$y=1+\sqrt{\frac{\ln \left(x^{2}+1\right)}{2}}$
AG
[4 marks]
(c) (when $x=0.1) y=1.07$ (1.07053...)

